Tuesday, March 27, 2012

Full-duplex

A full-duplex (FDX), or sometimes double-duplex system, allows communication in both directions, and, unlike half-duplex, allows this to happen simultaneously. Land-line telephone networks are full-duplex, since they allow both callers to speak and be heard at the same time. A good analogy for a full-duplex system would be a two-lane road with one lane for each direction.
Examples: Telephone, Mobile Phone, etc.
Two-way radios can be, for instance, designed as full-duplex systems, which transmit on one frequency and receive on a different frequency. This is also called frequency-division duplex. Frequency-division duplex systems can be extended to farther distances using pairs of simple repeater stations, because the communications transmitted on any one frequency always travel in the same direction.
Full-duplex Ethernet connections work by making simultaneous use of two physical pairs of twisted cable (which are inside the jacket), wherein one pair is used for receiving packets and one pair is used for sending packets (two pairs per direction for some types of Ethernet), to a directly connected device. This effectively makes the cable itself a collision-free environment and doubles the maximum data capacity that can be supported by the connection.
There are several benefits to using full-duplex over half-duplex. First, time is not wasted, since no frames need to be retransmitted, as there are no collisions. Second, the full data capacity is available in both directions because the send and receive functions are separated. Third, stations (or nodes) do not have to wait until others complete their transmission, since there is only one transmitter for each twisted pair.
Historically, some computer-based systems of the 1960s and 1970s required full-duplex facilities even for half-duplex operation, because their poll-and-response schemes could not tolerate the slight delays in reversing the direction of transmission in a half-duplex line.

No comments:

Post a Comment